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ABSTRACT

For certain space missions such as AAP 1/2, a long
duration requirement for solar pointing may exist, 1f fixed
solar panel arrays are considered for meeting a substantial
portion of the electrical power requirements. In this report
an approach for stabilizing the AAP 1/2 cluster configuration
in a Quasi-Inertial attitude mode has been investigated. In
thls mode the spacecraft principal axis of minimum moment of
inertia oscillates in the orbital plane with an average orien-
tation normal to the sun line.

The results of this study indicate that the Quasi-
Inertial approach offers the possibility of obtaining high
efficiency from fixed solar panels with relatively low RCS fuel
consumption. The degree of degradation in solar panel efficiency
due to attitude motion of the spacecraft about the sun line
depends on the parameter o, the ratio of peak aerodynamic torque
to peak gravity gradient torque. The degradation in efficiency
is only 21% for the largest value of a expected ( o = 0.4) and
only 3.1% for o= 0.12 which 1is typical.

The analysis includes an exact solution of the space-
craft equations of motion, an evaluation of typical initializa-
tion requirements for the mode and an estimate of the RCS fuel
consumption. The results indicate that an RCS fuel requirement
of only 300 1lbs./mo. appears possible as compared with 5800
1bs./mo. for maintaining an inertial orientation with standard
limit cycle control.
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Quasi-Inertial Stabilization of
the AAP 1/2 Cluster Configuration

1.0 INTRODUCTION

One of the objectives in the Apolloc Applications Pro-
gram is to achieve the capability of supporting man in space for
as long as one year. An approach for meeting this goal is the
use of cluster configurations such as the Orbital Assembly#¥
currently being planned by NASA for the AAP 1/2 and 3/4 earth
orbital missions. Attitude control of such configurations can
lead to appreciable momentum storage and/or RCS fuel require-
ments, if an inertial orientation 1s maintained for long periods,
since such large spacecraft encounter substantial gravity-
gradient and aerodynamic torque disturbances.

In the AAP 3/4 mission, in which solar astronomy ex-
periments will be conducted with the ATM/LM vehicle docked to
the Orbital Assembly, control moment gyros (CMG's) are available
for precise attitude control. An inertial vehicle orientation
has been proposed for this mission,*¥ which takes maximum advan-
tage of the CMG as a momentum exchange device. In this mode the
spacecraft principal axis of minimum moment of inertia is orien-
ted in the orbital plane normal to the sun line. The ATM
experiment line-of-sight is normal to this axis so that the
effect of orbit inclination to the ecliptic plane and nodal re-
gression can be overcome with appropriate roll displacement
about the principal axis of minimum moment of inertia. The
advantage of this mode is that the components of gravity-
gradient torque are periodic except for a small bias component
due to vehicle asymmetry.

¥The basic Orbital Assembly is comprised of an S-IVB Work-
shop, Airlock Module (AM), Multiple Docking Adapter (MDA) and
CSM.

¥%G, M. Anderson and W. W. Hough, "Hard-Docked ATM Experi-
ment Carrier", Bellcomm Technical Memorandum TM-66-1022-01,
November 18, 1966.
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In other AAP missions a long duration requirement for
solar pointing may also exist since the use of fixed solar panel
arrays 1s being considered for meeting at least part of the
electrical power requirements. The pointing requirement is not
as severe for solar panels however, since a misalignment of a
few degrees does not significantly degrade the performance.

When CMG's are not available for attitude control as in the
AAP 1/2 mission, counteracting the gravity-gradient and aero-
dynamic disturbance torque experienced in an inertial pointing
mode leads to a substantial RCS fuel requirement.

The purpose of this report 1s to describe a Quasi-
Inertial attitude mode which is similar to the ATM mode in that
the spacecraft orientation is nominally the same. The difference
i1s that the spacecraft principal axis of minimum moment of
inertia-oscillates in the orbit plane about an orientation normal
fo the sun line. Solution of the equations of motion is carried
out to determine the maximum deviation from the nominal orienta-
tion of the spacecraft as well as the initial conditions required
to establish the mode. The effect of aerodynamic torque 1is also
consldered and the results are supported by results obtained from
a digital computer simulation.

2.0 DESCRIPTION OF THE PROBLEM

In this section the geometry associated with the ATM
mode 1s reviewed and basic features of a Quasi-Inertial stabili-
zation mode are outlined.

2.1 Geometrical Aspects

The general attitude orientation of the spacecraft
principal axes (xyz) with respect to an inertial reference co-
ordinate system (XYZ) can be specified by the Euler rotation
sequence (¥,6,%) shown in Figure 1. The local vertical position
of the spacecraft in orbit 1s defined by the angle n. The space-
craft principal axis of minimum moment of inertia 1s assumed to
be the x axis. In the ATM mission the x axis is maintained in
the orbital plane (6 = 0) and positioned normal to the sun line
(¥ rotation). The experiment line-of-sight assumed parallel to
the y axls 1s aligned toward the sun by roll motion about the x
axis (& rotation). The angles ¥ and ¢ are varied periodically
to account for nodal regression and season. The required
variation in ¢ i1s limited to the range -52° < ¢ < +52° for an
orbit inclination of 28.5° with respect to the equator whereas
¥ 1s generally unrestricted.
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LOCAL
VERTICAL

ORBIT
PATH

X,Y,Z - INERTIAL AXES
x,y,Z - SPACECRAFT PRINCIPAL
AXES

Y,0,4 - EULER ANGLE SEQUENCE

FIGURE | - SPACECRAFT ATTITUDE WITH RESPECT TO AN INERTIAL REFERENCE

2.2 Attitude Control

The spacecraft orientation described above for the ATM
mission is also advantageous for the AAP 1/2 mission with fixed
solar panels mounted normal to the y axis of the cluster config-
uration. In order to maintain a fixed attitude orientation

however, the disturbance torgue impulse fTDdt acting on the

spacecraft must be cancelled exactly. The basic equation de-
scribing the attitude behavior of the spacecraft is

{(Iw) = Tw + w x ITw =T, + T (L)
- - = - =D =c

2

which expresses the rate of change of spacecraft angular momen-
tum in terms of the angular velocity
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(w.] 2 0 i N
W ~-sinse ®
w = o f= 0 cos® cos6 sing¢ 6 (2)
w, vO -sind cos8 cos? ¥
CJ L J

and the principal axls inertia tensor

- n
Ix 0 0
I =10 I 0 '
y (3)
0 0 I
- “

The term ED represents the disturbance torque acting on'the

spacecraft including the gravity-gradient and aerodynamic tor-

gues and EC is the control torque provided by an RCS or momentum

exchange system.

In the AAP 1/2 mission CMG's are not available and the
RCS fuel expenditure for a long duration inertial hold is prohi-
bitive.¥ The Quasi-Inertial stabilization approach to be de-
scribed in the next section leads to conditions under which the
spacecraft is held approximately in the same orientation as in
the ATM mode with comparatively low RCS fuel expenditure.

2.3 Quasi-Inertial Stabilization

In order to simplify the discussion it will be assumed
that the spacecraft moves in a circular orbit, and initially that
the spacecraft is symmetric so that IZ = Iy and furthermore that

8(t) = o(t) = 0.%¥*%* As described in Appendix A, Eq. (1) reduces
to a single differential equation describing the motion of the
vehicle in the orbit plane about the z axis.

¥Elrod, B. D., "Flight Attitude Alternatives for AAP 1/2,"
Bellcomm Technical Memorandum, TM-67-1022-2, April 21, 1967.

¥%¥The conditions required for achieving 6(t) = &(t) = 0 are

discussed in Appendix A.
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IZQ = - Tgm sin 2(y-n) - aTgm cos (¥-n) (4)
The term
3w§
Tgm = 5 (IZ - IX) (5)

represents the peak gravity-gradient torque and aTgm represents

the peak aerodynamic torque expressed as a fraction of Tgm.*

The spacecraft orientation corresponding to this problem is
shown in Figure 2.

ORBIT
- PATH

LOCAL
VERTICAL

X,Y = INERTIAL AXES

%,y = SPACECRAFT PRINCIPAL
AXES

FIGURE 2 - SPACECRAFT ATTITUDE IN ORBIT PLANE

It is convenient for the analysis to consider the
motion of the spacecraft in terms of the angular displacement
¢ from the local vertical. From figure 2 1t folliows that

y=¥-n=V¥-ot (6)

*¥In general, o may be positive or negative depending upon
the relative location of the spacecraft CG and center of pres-
sure. For convenience however, only o > 0 will be considered,
since the results are completely analogous for a < 0. Normally
|a| < 0.4 at altitudes above 250 NM with the cluster configura-

tion being considered for AAP 1/2.
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where W, is the orbital angular velocity. Consequently Eq. (4)
can be written as

Y = - Bsin 20 - aB cosV (7)
where

B = T,/T, = 305 K,/2 (8)
and

K, = (I, - I)/T, (9)

When the aerodynamic torque is negligible (a ~ 0),
Eq. (7) is similar to the differential equation obtained in de-
scribing the motion of a simple pendulum. A first integral of
this differential equation can be obtalned after multiplying by
the integrating factor 2y so that

i® = 2B cos®y + C, (10)
where
a2 2
C1 = wo - 2B cos wo (11)

Analogous to the pendulum problem, the motion of the
spacecraft in the orbital plane 1s characterized by two possible
modes. This can be illustrated by a phase plane plot of V¥ vs V¥
as shown in Figure 3 for various initial conditions. The closed
trajectory (A) encircling the origin of the phase plane corre-
sponds to oscillation about the local vertical. The outside
trajectories (B and C) corresponding to continuous rotation with
respect to the local vertical are analogous to a pendulum with
sufficient initial velocity to continuously revolve about 1its
pivot. The boundary on the phase plane dividing the two types
of trajectories 1s known as the "separatrix". The equation for
the separatrix can be obtained from Egs. (10) and (11) by let-

ting ¥ = 0 and &o = + V2B so that C; = 0 and

iz z @2 = 2B coszw (12)
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SEPARATRIX

FIGURE 3 - PHASE PLANE TRAJECTORIES OF SPACECRAFT MOTION WITH
RESPECT TO LOCAL VERTICAL

or

¢S= + /2B cosy (13)
For trajectories outside the separatrix starting at v = 0 it
’ (0]
follows that ]wol > V2B.
Evaluation of y(t) for trajectories outside the

separatrix can be obtained after integration of Eq. (10). This
follows after writing Eq. (10) in the form

3% = - 2B(1 - cosy) + (C; + 2B)
2
= 02 - 2B sin"vy (14)
where
C, =C. + 2B = @2 + 2B(1—cos2w ) = @2 + 2R sinzw (15)
2 i 0 ) ) 0
Consequently,
ot /TN - K siny (16)
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where

~
"

2B/C, (17)

Integration of Eq. (16) yields®*

t p(t)
ert =t =+ - dv =t . [F(k,w(t))— F(k,woﬂ
0 /—C? wo /f— k2 sin2w /C_2‘ (18)

The function F(k,y) is an elliptic integral of the first kind
which 1s available in tabulated form as a function of the modu-

lus k and argument v.¥*¥ Two properties of the elliptic integral
are

F(k,n3) = n F(k,n/2) = n K(k) (19a)

and
F(k,nm+8) = nF(k,n) + F(k,B) = 2nK(k) + F(k,B) (19b)
where 8 is an arbitrary angle and n is an integer (n=0,+1,---).

The term K(k) = F(k,n/2) 1s the complete elliptic integral of
the first kind.

The time 1 required for a half revolution of the
spacecraft with respect to the local vertical is obtalined from
Eq. (18) for y(t) = =« + . In view of Eq. (19b) this yields

{m, T ) - F(k,wo>} = - K(k) (20)
vC
2

Q|+
n

¥Proper interpretation of the signs (+) 1is important here
since only t>0 is of interest.

¥*Jahnke & Emde, "Tables of Functions", 4th Ed., Dover
Publications, New York, N. Y., 1945, pp. 52-89.
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Also as a result of Eq. (19), the time interval for each subse-

gquent half interval is identical. Consequently the time interval
for a complete revolution is

1 ' 4
T = — (F(k,2n + v ) - F(k,y )} = — K(k) (21)
/——‘02 i 0 o} /——\02 :

The general trend in y(t) for the two trajectories
(B and C) outside the separatrix in Figure 3 is shown in Figure 4
for wo = 0. As a result of the property of the elliptic in-

tegral expressed in Eq. (19), the deviations in y(t) from a
linear component, wav(t), are periodic. The linear component

for the curve C can be expressed as

o

= _ g&m = 1
b (8) = -2t =t (22)
where
]]) = - 2_1T - r ._9.2_ (23)
av T 2 K(k)
¥(t)
271-{
Inf2 B
A%:[w(t)-wo]
1 B: (+ VIB< ¥ < ¥,)
"/zl ¢ (Po< ¥ <= /2B)

AV

o L ) S Sl Z\/2__™\T
Ts Tj2 a1/ T t -Av T/ 3T/u t

- 1{/24

3" 03

¢

-

Yoy = = ug
-3n/2 v, = l//°= .
-2r
FIGURE 4 - DEVIATION OF SPACECRAFT FIGURE 5 - VARIATION IN W(t)
FROM LOCAL VERTICAL FROM NOMINAL
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The basic idea involved in the Quasi-Inertial stabi-
lization scheme concerns the choice of wav' In view of Eq. (6)

it follows that
Vo= 9o+ o (24)

By appropriate selection of the initial angular velocity @o such
that wav = - the displacement of the spacecraft from an ini-
tial orientaticn (WO) normal to the sun line will be periodic
with a maximum amplitude equal to the maximum deviation of y(t)

from the linear component wav(t). A plot of ¥(t) - wo correspond-
ing to trajectory C in Figures 3 and 4 is shown in Figure 5 for
wav = -w and WO =y, = 0.%

The foregoing analysis will be extended to include the
effect of aerodynamic torque (o > 0). The basic concept still
involves an appropriate angular rate initialization (¢o) such

that iav = —w The peak angular dlsplacement Awm of the space-

craft from the nominal orientation will generally vary with q.
In the next section the initial angular rate and the resultant
peak displacement AWm are evaluated for several levels of aero-

dynamic torque.

3.0 DETERMINATION OF INITIALIZATION REQUIREMENTS

. To establish the Quasi-Inertial mode the initial condi-
tions (wo, wo) must result in an average angular rate of the

spacecraft which 1is just opposite to the orbital rate. In terms
of the phase plane (y vs y) in Figure 3, the required initial
conditions must lie somewhere on trajectory C 1f this is the

trajectory with iav = - . In the next two sections the required
initial rate @o with « = 0 and o # 0 will be evaluated at either
b, = 0 or wo = + n/2, since these polnts correspond to convenient

reference position in the orbit.** Also the peak angular

¥The choice of Wo = wo = 0 here is for convenience. In

general Wo = wo need not be zero.

¥*¥The initial points wo = 0 and wo = + m/2 are of interest

since they correspond to the local vertical and local horizontal
orientation of the spacecraft.
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displacement Awm analogous to Figure 5 will be determined. In

the following section the RCS fuel requirements for initializa-
tion are dlscussed and finally the effect of spacecraft asymmetry
(Iy $ Iz) on the Quasi-Inertial mode 1is considered.

3.1 Initial Conditions (o 3 0)

When the aerodynamic torque is negligible, the motion
of the spacecraft in the orbit plane 1is described by Eq. (18)
and either Eq. (14) or (10). The condition for the Quasi-
Inertial mode 1is that wav = —w, which implies from Eq. (23)

that
Yav T T 2 K T "% (25)

In view of Eq. (17) it follows that

/6; = /2B/k (26)

Consequently, Eq. (25) can be written as

% A = k K(k) 27)
where
A = /2B w, = /3KZ'= /3(1Z - Ix)/Ié' (28)

follows from Egqs. (8) and (9). Upon evaluation of A for a par-
ticular spacecraft configuration the transcendental function

k K(k) can be evaluated numerically to obtain K(k) and the modu-
lus k.

The initial angular rate io can be obtained from Egs.
(14), (26) and (28) which yleld

2 L2 2 2 .2 2
wo = 02—2B sin“y = (A/k)"[1-k s;n wojwo (29)
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so that
v o= - (A/k) /gi— k2 singw w (30)
(o] 0] o}
For wo = 0 the initial rate 1s
b F Vo T - (A/K)w (31)
For v, = n/2 the initial rate is
o e 2 :
b, = Vg = - (WK) V1-k7 w (32)

The initial points A and B are indicated on the phase plane
shown in Figure 6.

SEPARATRIX

FIGURE 6 - PHASE PLANE TRAJECTORY IN QUASI-INERTIAL MODE

With @av = -, the deviation of the spacecraft from the

nominal orientation 1s periodic as 1llustrated in Figure 5. The
maximum deviation sy, oceurs when ¥ = 0 or in view of Eq. (24),

whenever § = —w . This 1s indicated by point C in Figure 6. The
corresponding value of y = y_ can be obtained from Egs. (14), (26)
and (28), which yield
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. 2
W = ws = C, - 2B sin2wm - (2B/w§) [1/k° - sinzwm]w%
= ;\2(1/k2 - sin2wm)wi (33)
or
siny = - /l/k2 - l/A2' (34)

With this result and Egs. (6), (18), (26) and (28) the maximum
deviation of v¥(t) from vo= wo = 0 (for convenience) becomes#

(]
- = — ) -
AY = bt e b=y F(k,wm) Y

e

. |
m = % Flksup) (35)

All results in the foregoing analysis depend on the

quantity i /§K; which is a physical parameter characterizing
the spacecraft configuration. In general KZ is limited to the
range 0 < K, < 1. For a uniform spherical spacecraft, K, =0
whereas KZ ~ 1 for long cylindrical spacecraft. The maximum
deviation Wm as well as the initial conditions corresponding to

points A and B on the phase plane trajectory in Figure 6 are
tabulated in Table I.

TABLE I - SUMMARY OF INITIAL ANGULAR RATE CONDITIONS
& INERTIAL ATTITUDE DEVIATIONS

KZ A= 3KZ k l.poA/mo l.poB/mo wm AWm
1.0 1.732 é 06873 1 ~1.788 1t o ihh 1 _5R g0 118 Ro
0.333 1.0 0.79310 | -1.261 | -0.768 | -50.2° 7.0°

0 0 Q¥ -1 -1 Q¥ O¥¥%

¥See Footnote ¥ on page 8.

¥%Tn evaluating Eq. (27) as » > 0 it turns out that
K(k) - n/2 and k -+ A». As a result of Eq. (34), vy > 0, which

implies that v 0 from Eq. (35).
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The results for Awm in Table I are to be expected since

the gravity-gradient torque has a decreasing effect as the space-
craft configuration becomes more spherical. The Orbital Assembly
configuration to be used in the AAP 1/2 mission is long and
cylindrical such that 0.9 < KZ < 1.0. Consequently, a maximum

deviation in the neighborhood of AY_ = 18° from the nominal would
be expected if the aerodynamic torgque was negligible.

3.2 Initial Conditions (a ¢ 0)

When aerodynamic torque is not negligible (a ¥ 0),
solution of the differential equation

i = - B sin2y - oB cosy (36)

describing the motlon of the spacecraft in the orbital plane is
more complicated. In this section a solution of Eq. (36) is
obtained and used to obtain initial conditions for establishing
the Quasi-Inertial mode.

A first integration of Eq. (36) can be obtained after
multiplication by the integrating factor 2y so that

72 = -2B sin®y - 24B siny + C
| = -2B [sin®y + asiny + a®/4] + (C + B a°/2)
= 03 -2B(siny + a/2)2 (37)
where
C. = 2 + 2B(siny_ + a/2)° (38)
3 ) )

When o = 0, these equations reduce to Egs. (14) and (15).

The motion of the spacecraft is again characterized by
two possible modes as illustrated in the phase plane plot of
v vs ¢ as shown in Figure 7 for various initial conditions and
a > 0. The boundary or separatrix dividing the two types of
trajectories can be obtained from Egs. (37) and (38) be letting

v, =V, = -sin'l(a/2) and io = + V2B (1 + a/2). This ylelds



BELLCOMM, INC. - 15 -

SEPARATRIX

FIGURE 7 - PHASE PLANE TRAJECTORIES OF SPACECRAFT MOTION
WITH RESPECT TO LOCAL VERTICAL (cx>0)

02 = ¢§ = 2B(1 + a/2)° - 2B(siny + a/2)°
= 2B[1 + o + az/u - sinzw - o siny - a2/u]
= EB[coszw + a(l - siny)] (39)
or
&S = + /EE'[COS2¢ + a(l - sin\p)]l/2 (40)

which 1s equivalent to Eq. (13) when o« = 0. The angular velo-
citlies g and v corresponding to the maximum and local

S max s min
minimum points on the separatrix can be evaluated from Eq. (40)
for b, = nm + (—l)nwa and by = 2nm - w/2 respectively, where
n =0, +l, +2,-- and y_ = -sin”* (a/2). The result is
is nax * + /2B [coszwa + a(l - sinwa)]l/2
= + kwo{[l - (a/2)2] + o(l + a/2)}1/2

=+ (1 + a/2)he (41)
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and

b . =i/ﬁ‘[2a]1/2=i/ﬁxwo (42)

S min

where ) = /3Kz = /2B w, as defined in Eq. (28).

For trajectories inside the separatrix the effect of
the aerodynamic torque is to shift the points of equillibrium¥
so that the spacecraft no longer osclllates symmetrically about
the local vertical. Outside the separatrix the trajectories B
and C, as before, correspond to continuous rotation with respect
to the local vertical.

The second integration of Eq. (36) to obtain y(t) for
trajectories outside the separatrix again leads to an elliptic
integral. From Eq. (37) it follows that

%% /i - k (siny + 0/2)° (43)
where
2 _
ka = 2B/C3 (4h)

Integration of Eq. (43) yilelds

t p(t)
J[ dt = t = + 1 jf dy
0 /6; "/ /3 - k (51nw + a/2)

(o]

(L5)

which 1s an elliptic integral, although not in standard form un-
less a = 0. The reduclion of the 1integral to standard torm is

*An eguilibrium point is a condition of zero angular velo-
city (¢ = v, = 0) for which the angular orientation of the space-

craft remains fixed with respect to local vertical, since the
gravity-gradient and aerodynamic torques are equal and opposite.



BELLCOMM, INC. - 17 -

carried out in Appendix B. The result is#¥

o(t)

1 )1 j do
~ \k_m y
C3 a o, Vi - kg sinzc

ct
L}
|+

1
+ ———— (F[k_,0(t)] - F(k_,0 ) (46)
S o

The relationship between y(t) and o(t) as gilven in Eq. (B-37) is

sin y(t) + n

_ e
sin o(t) = T+, sin v(0) (47)

The parameters m, ke and n, are all functions of ka and a. They

are given in Appendix B in Egs. (B-42), (B-43) and (B-44) respec-
tively. When o + 0, the expression for t reduces to Eq. (18),

since ng > 0, m ~» l/ka, k - ka + k and C3 - Cz.

e

The time interval for one revolution of the spacecraft
with respect to local vertlical can be expressed as

=
T=—-——F(k,2‘"+0)—F(k,0)}
e 0 e’ o
/5; k m
= 4 Bk ,n/2) = —— K(k.) (48)
B w Am e w Am e
where

/6; ka = (/§§7mo)mo =l (49)

%¥See Footnote * on page 8.
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due to Egs. (28) and (44). The solution for y(t) is similar to
the result shown 1n Figure 4 for o« = 0. The varlation about the
average component 1is a function of o as well as the spacecraft
confilguration parameter 2.

The average component of y(t) for trajectory C in
Figure 7 1s given by

Voult) = vt = -7/t (50)

For the Quasi-Inertial mode it 1s necessary that

N =_2_1T=_1w0)\m=_ (51)
Yav T 2 K(k) ©y

or
K(k_ ) Klk_(k_,a)]
m _ (5] _ e a
E A= — = m(ka,a) (52)

Upon specification of o and » the value of ka which satisfiles
this transcendental equation can be determined numerically.

The initial angular rate &o for the Quasi-Inertial
mode can be obtained from Egs. (37), (44) and (28) which yield

&3 = ¢y - 2B(siny + 0/2)° = (2B/w§)[l/k§ - (sinwo+a/2)2]w§

(/R [1 - kS (siny |+ $)270° (53)

SO that#

2 2
- (A/ka) /- ki (siny_+ o/2) w, (54)

<
I

*¥If the inertial initial rate is desired it is only neces-
sary to add 0 since V¥ = wo + w,
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For wo = + n/2 and ¢o = - 1/2 the required initial rates are
respectively
- e 2 2
b= k) A - L ra2) e (55)

and

b= k) A - (1w (56)

(¢}

The initial points A and B are indicated on the phase plane in
Figure 8.

<.

<

<.
it

1

£

FIGURE 8 - PHASE PLANE TRAJECTORY IN QUASI INERTIAL MODE

The inertial attitude of the spacecraft as expressed
in Eq. (6) is

¥y =y + wot (57)

where ¥ = ¢ 1s the nominal orientation. For i = - u the
(o} 0 av o

deviation from the nominal is periodic. When a = 0, the period
1s half the orbital period T and the deviation in each successive
quarter period is symmetric wlth equal maximum deviations Awm as

glven by Eq. (35) and illustrated in Figure 5. When o % 0, the
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peak deviations are not necessarily equal in successive quarter
periods. Due to asymmetry as shown on the phase plane of Figure

8 the departure of the trajectory from the line ¢ = - ©, is 1less
at v = - 1/2 than at ¢y = + /2. ,Consequently, the maximum
deviation Awm which occurs when ¥ = 0 or equivalently whenever

v o= - w s will correspond to a point (C) near ¢ = /2, -3n/2,
etc. in Figure 8 rather than a point (D) near ¢ = - /2, -5u/2,
etc. In fact for sufficiently large o, the trajectory will no
longer cross the line wo = - w_ near ¢y = - n/2,% so that only

two maxima will result during each orbit. The value of y = wm

corresponding to the point C between ¢ = 0 and ¢ = /2 can be
obtained from Egs. (37), (44) and (28) which yield

Ig = o = C3 - 2B(siny, + a/2)°
= 2°[1/k° - (siny_ + o/2)%742 (58)
a m 0
or
siny_ = + /K2 - 1% - a/2 (59)

The maximum deviation Awm from the nominal orientation

can be determined from Egs. (57), (46), (44) and (28). The
result is

Ay o= v -y = (ypt e ) - o= Gup- v )
-1
+ o {@m [F(k,0,) - F(ke,oon}
= (y = ¥,) + = [Pk 0 ) - Flk,,0.)] (60)

*On the separatrix the angular rate corresponding to

y = - n/2 is given by Eq. (42) as @S min = — Y2o%w . Consequently,
for o > 1/2>\2 = 1/6KZ, no intersections with the 1line @O = -,
are possible near ¢y = - n/2, - 5n/2, etc.
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where
siny_ + n
m e

sing_ = (61)
m 1+ ng sinwm

In general, both the initial angular rate @0 and the
maximum deviation wm - WO = Awm vary with o as well as the space-
craft configuration parameter x = V3K . This variation is
indicated in Table II where wo/mo, ?O/wo, Awm and wm are tabu-
lated for various values of a.

TABLE II - SUMMARY OF INITIAL ANGULAR RATE CONDITIONS
& MAXIMUM INERTIAL ATTITUDE DEVIATION VS o

Data a =0 a = 0,03} a0 =20.121a = 0.4
&o/mo -0.4675 | -0.3856 | -0.2427 | -0.1120
@o/wo 0.5325 0.6144 0.7573 0.8880
AY 17.8° 23.7° 38.0° 59.1°
wm 58.13° 56.86° 55, 86° 57.46°

Parameters

k, 0.9632 0.9608 0.9347 0.8320
Ky 0.9632 0.9637 0.9660 0.9753
m 1.0382 1.0389 1.0524 1.1101
n, 0 | -0.1870 | -0.5580 | -0.8611

These data are the results of calculations based on the fore-
going analysis with ¥ _ = y = 90° and KZ = 0.9346.% The initial

*The conflguration parameter K_ = 0.9346 used here is typical
for the Orbital Assembly conflguration being considered
for the AAP 1/2 mission.
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conditions, &O and wo = 90°, were used in a digital computer

solution of Eq. (36) to obtain a plot of A¥(t) as shown in
Figure 9 for o« = 0, 0.03, o = 0.12 and o« = 0.4. The maximum
deviat;ons AWm compare favorably with the calculations listed

in Table II.

3.3 RCS Fuel Requirements for Initialization

In order to establish the'Quasi-Inertial mode exactly
it is generally necessary to achieve a set of initial condi-
tions (wo, wo) such that the average angular rate of the
spacecraft is just opposite to the orbital rate w . If
v = - pu, with o # 1, the deviation AY of the spacecraft from

av
the desired inertial orientation WO contains a linear component

v () = -out +ot=1(1L-oot (62)

in addition to a periodic variation as described previously.
The accumulated deviation after one orbit without an intermediate
re-initialization is

WQ(T) = (1 - o)wOT = (1 - p)2m (63)

Thus, a 10% rate initialization error¥* produces an accumulated
linear deviation of 36° after one orbit or 18° after a half
orbit. Re-initialization is required when Wz(t) exceeds a

tolerable level.

Several methods for accomplishing the initialization
operation can undoubtedly be devised. A complete examination of
various initialization schemes and corresponding control system
requirements is beyond the scope of this report. However, in
order to provide some indication of the RCS fuel requirements for
initialization a scheme based only on angular rate initialization
once per orbit will pe described.

¥Since the orbital angular rate w is in the order of

0.064 + 0.002 deg/sec for 200-300 NM orbits, rate errors less
than 10% imply a spacecraft rate control capability of at least
+ 0.003 deg/sec.
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In Figure 10 the phase plane trajectories correspond-
ing to three different values of wav are shown.*¥ The center

SEPARATRIX H
Y
,/"\\:: N 7
. N
P . -\ p<l
\Evc;/ NN TN \\*co:;p:l
N %" \\ \—3" NG :o/p>,
[+]

FIGURE 10 - PHASE PLANE TRAJECTORIES OF SPACECRAFT MOTION
WITH RESPECT TO LOCAL VERTICAL

trajectory (A) is the desired trajectory with p = 1. From an
initial condition corresponding to points a.s bo, or ¢ in

Figure 10 the spacecraft would move along the respective tra-
jectories to points a, b, or ¢ after one orbit. Since

¥y(T) = (T) + on = y(T) + 27 (64)

the angular deviation associated with trajectories B and C are

AWB and AWC as indicated in Figure 10. The same information is

indicated in Figure 11 where AY¥(t) is plotted for the three
cases. v

¥In order to simplify the discussion only the trajectories
for a = 0 are considered, since the results are similar when
aerodynamic torque is not negligible (o % 0).
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av(t)

aw (1)

p=|
AN /"\!\/ /"\
wlc(T) 7/ \\//

—

<1
>

7 "
5 12N_/ 7 /n}‘v R

. - ~ p< |
s
V1s(T) N~ \\./l \\ A
Awy(T) \p=,
FIGURE |1 - VARIATION IN Ur(t) FROM NOMINAL

If the average angular rate of the spacecraft on tra-
jectories B or C 1s re-initialized to bring point b to b' or c
to c¢' respectively, the angular deviation AY¥(t) would again vary
periodically, but about Wz(T) as shown by the dashed curves in

Figure 11, since iav = - W It would be better however, to re-

initialize from point b to b" and from ¢ to ¢" 1n order to
reduce the linear deviation from WQ(T) to zero during the next

orbital period.¥ The corresponding deviation A¥(t) is indicated
by the solid curves in Figure 11 for T < t < 2T. The RCS fuel
requirement would then be based on an angular rate correction
AWC of twice the original rate error, specifically

wav = - w. In general the companion trajectory of B or C used in

reducing Wl(t) to zero in exactly one orbit as shown need not

coincide with trajectory C or B respectively. For purposes of
illustration however, it is assumed that trajectories B and C are
companion trajectories. It should be noted that other companion
trajectories outside the band defined by B and C would be associ-
ated with initialization schemes based on rate correctlon more
frequently than once per orbit.

¥At t = 2T another rate correction could be applied to achieve
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A@C = 2A@c = 2(1 - p)wo (65)

Consequently for a rate initialization error of 10% the magnitude
of the desired rate correction is |a¥ [ = 0.2w_. The correspond-

ing change in spacecraft momentum must be
sH = I |av | = 0.2T u_ (66)

Since the required control torque impulse ITCdt must equal AH,
the RCS fuel consumption when firing two jets as a couple is

u o J&cdt _ 28 _ 0.4 Izwo (67)
F I L I L I L
Sp Sp Sp

where IS i1s the specific impulse of thé RCS propellant and L is

the distance between jets.

A worst case estimate of the total RCS fuel requirement
for a long duration mission can be made assuming that on the
average an angular rate correction equivalent to a 10% rate
initialization error must be made every orbit. For
I, =2.0x 106 slug—ft2, Isp = 280 sec, L = 12.8 ft. and
w,oo= 1.11 x 10_3 rad/sec for a 270 NM orbit, the RCS fuel con-
sumption according to Eq. (67) is

o2 0.2 x 109 (1.21 x 1073)
F (280) (12.8)

= 0.25 1bs/orbit
(68)

The RCS fuel consumption rate for initialization is then appro-
ximately 4 1lbs/day or 120 lbs/month.



BELLCOMM. INC. - 27 -

4.0 EFFECT OF SPACECRAFT ASYMMETRY ON QUASI-INERTIAL MODE

Throughout the foregoing analysis of the Quasi-Inertial

mode the spacecraft was assumed to be symmetrical (Iy = Iz). The
attitude control function then involved only a recurrent initia-

lization operation for the purpose of sustaining the mode. When
the spacecraft is not symmetrical (Iy $ IZ), the differential

equation describing, the motion of the principal axis cof minimum
moment of inertia (x axis) is modified slightly. Furthermore an
additional attitude control requirement results, since the
gravity-gradient torque about the x axis is no longer zero unless
@o = 0.%¥ 1In this section the modification to the differential

equation is noted and the RCS fuel consumption associated with
the x axis control requirement 1s evaluated.

According to Egs. (A-13) and (A-21) in Appendix A the
expressions for the equivalent disturbance torque de and the

differential equation describing the x axis motion in the orbital
plane are respectively

3
1}

ax = (Tgme/3)sin2e [(#/6)% + 3s1n®(¥=n)] (69)

and

L3
L}

-B' sin2(v¥-n) - o'B' cos(v¥-n) (70)

Here Tgmx is the peak gravity-gradient torque about the x axis

and o' 1s related to the parameter o which 1s the ratio of peak
aerodynamic torque to peak gravity-gradient torque about the
z axis.

In the previous analysis it was convenient to conslder

the motion of the spacecraft in terms of the angular displace-
ment ¢y from the local vertical where

w:w__n=\y-wot (71)

¥This is clearly a special case since in general the out-of-
orbit-plane solar pointing angle may be 1in the range -52°<9<+52°
for an orbit inclination of 28.5° with respect to the equator.
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Consequently Egs. (69) and (70) can be written as

L=
]

dx (Tgmx/3)sin2_¢0 [(J;/mo + l)2 + 3sin2w] (72)

and

-B' sin?¢y - a'B' cosvy (73)

< 2
i

The latter result differs from Eq. (36) in that the constants a'
and B' both depend on @o in addition to the inertia parameters

as indicated in Egs. (A-21) through (A-29). However, as also
noted in Appendix A, the constants B' and o' do not differ
significantly from the constants B and o« in Eq. (36) when

IZ > Iy >> Ix’ as is true for the Orbital Assembly configuration.

Consequently the results in Table II will not differ greatly when
slight spacecraft asymmetry 1s taken into account.

The RCS fuel consumption per orbit associated with the
control torque requirement on the x axis can be calculated from

T T

' T _dt T. dt -
cX dx
W =2£. =2£ (74)

F IspL IspL

where fTCth is the control torque impulse produced by the RCS
thrusters, Isp is the specific impulse of the RCS propellant and

L is the distance between two RCS jets fired as a couple. The
expression for de in Eq. (72) involves both ¢ and y. In view

of Egs. (37), (44) and (49), J can be obtained from

§° = ¢y - 2B (siny + at/2)°

(A1 /&I - k12 (siny + o'/2)% 102 (75)
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or
d/at = ¥ = -(A'/k!) A - kgz (siny + G'/2)21wo
= =(A'/k}) M(¥)w_ (76)
where
M(y) = /1 - k22 (siny + ar/2)7 (77)
AY o= @/wo (78)
and
k! = /2B'/c3' (79)

After substituting Eq. (76) into Eq. (72) the expression for T

becomes dx

de = (Tgmx/3)sin2<1>O N(y) (80)

where

N(W) = [(/kD® M) = 2(a'/k]) M(y) + 1+ 3sin®y]  (81)

The required control torque impulse OITTCth 1s then given by

T T f2n
JP Tcxat = Jﬁ deat kTgmx/5)51nd?oJ N(y)dy/y
(o] (o] (o]

(Tgmx/3)81n2®o [G/w (X'/k])] (82)
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where wo = 0 for convenience and

=27 =2
G = _jF N(v)gy = -j’ [CAt/k)ZM(9)=2(1" /K )+1/M(p)+3s1n"y/M(3) Jdy
o] [o]

M(y
(83)

The three terms in G involving M(y) lead to elliptic integrals of
either the first or second kind, although not in a standard form
unless o = 0. When o = 0, the result is*¥

G = 4<(A'/ké)2E(ké) - ur" (A'/ké)+K(ké)+(3/ké2)[K(ké) - E(ké)]}

(84)
where
-2
dy/M(y) = F(ké’—2n) = —MF(ké T/2) = —MK(ké) (85)
(o]
and
~-2m
Jﬁ M(y)dy = E(ké ~271) = -ME(ké T/2) = —ME(ké) (86)
o

The complete elliptic integrals of the first and second kinds,
K(ké) and E(ké) respectively, can be evaluated from tables¥*#

once the modulus ké is specified. Finally, after substitution

of Eq. (84) into Eq. (82) the RCS fuel consumption per orbit
(with o = 0) can be expressed as

¥The last term in G can be expanded to the form
2 _ , 2 .
sin“y/M(y) = (1/kT)[1/M(y) - M(y)]

¥%¥Jahnke and Emde, op. cit.
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2 JET T dt

I
Sp

) 8Tgmx|sin2¢o| 2 ' 2 & | |
= 3mo(l'/ké)ISpL (l+3/ka )K(ka)'l'[(l /ka) —3/ka ]E(ka)_“(A /ka)

(87)
As a specific example the RCS fuel requirement will be evaluated
for spacecraft asymmetry in the order of (IZ - Iy) = 0.1 x lO6
slug—ft2. In particular the spacecraft inertias IZ = 2.06x106,

Iy = 1.96 x 106 and Ix = 0.135 x lO6 are considered. As noted

in Table A-1 of Appendix A, the constant B' is virtually un-
affected by the asymmetry. Consequently A' and ké are ldentical

to the wvalues of A and ka used in connection with Table II for

a = 0 and IZ = Iy = 2.06 x 106 slug-f‘t2 Thus, (A'/k') = 1.674

and ké = 0.963 so that E(ké), 1.08 and K(k ) = 2.732.% For
I = 280 sec., L = 12.7 ft. and w_ = 1.11 % 1073 rad/sec.

Sp
(270 NM circular orbit) the RCS fuel consumption is then

W 0.44]sin2¢ | 1bs/orbit

F o ‘

6.65|sin2e | 1bs/day (88)

Since the fuel consumption varies from day to day due to the
varlation in ¢ o? the total fuel requirement for a particular

mlssion duration should be based on the average value of
ls1n2®o] ¥%¥ T1f the average value is 0.75 over a 30-day mission,

the RCS fuel requirement for x axis attitude control would be
approximately 150 ibs.

¥Jahnke and Emde, op. cit.

%A typlcal variation in ® and |sin 2¢o| over one year 1is
shown in Figure 12. A derivation for ¢ as a function of the orbit

inclination, nodal regression and season is given in Appendix A
of the technical memorandum cited in footnote ¥, p. 4.
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5.0 SUMMARY AND CONCLUSIONS

In this report an approach for stabilizing the AAP 1/2
cluster configuration in a Quasi-Inertial attitude mode has been
investigated. The analysis includes an exact solution of the
spacecraft equations of motion, an evaluation of typical 1nitia-
lization requirements for the mode and finally an estimate of
the RCS fuel requlrements including the effect of spacecraft
asymmetry.

In the Quasi-Inertial mode the spacecraft principal
axis of minimum moment of inertia (x axis) oscillates in the
orbital plane about an orientation normal to the sun line. The
results of this study indicate that the maximum deviation (Awm)

of the x axis from the normal varies between approximately 18°
and 60° for the AAP 1/2 cluster configuration depending on the
ratio (o) between the peak aerodynamic torgque and peak gravity-
gradient torque. Due to this deviation fixed solar panels will
operate at less than 100% efficiency, specifically

|cosAW(t)|ave. x 100%. A tabulation of lcosAY(t)lave. from the

curves of AY¥(t) in Figure 9 over the interval (T/4 < t < 3T/4)

is given in Table III. Since it is possible by appropriate in-
itialization to achieve this half orbit on the light side, the
results in Table III indicate that the drop in efficiency 1s

only 21% for the maximum value of a considered and this decreases
sharply as o =+ 0.

TABLE III - Summary of Solar Panel Efficiency
Factors in Quasi-Inertial Mode

o BY |cosAW(t)|ave.

C 17.8° 0.977
0.03 23.7° 0.993
0.12 38.0° 0.969
0.4 59.1° 0.79

The RCS fuel requirements for the Quasi-Inertial mode
are assoclated with perlodic initialization operations and roll
control about the x axis due to spacecraft asymmetry. The
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results of this study 1indicate that an RCS fuel requirement of
300 1bs./mo. or less appears possible. This is to be compared
with 5800 1lbs./mo. for a true inertial attitude hold of the
AAP 1/2 cluster configuration.¥

In summary, theruasi—Inertial approach offers the
possibility of obtalning nearly maximum efficiency from fixed
solar panels with relatively low RCS fuel consumption.
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APPENDIX A

Spacecraft Attitude - Equations of Motion

The purpose of this Appendix is to obtain the differ-
ential equations describling the motion of the spacecraft with
the principal axis of minimum moment of inertia in the orbital
plane. From Newton's second law for rotational motion the basic
equation describing the attitude behavior of the spacecraft 1s

- (Tw) = Ti+oxTu=T)+T (A-1)

This equation expresses the rate of change of angular momentum
in terms of w the spacecraft angular velocity wilth respect to
an inertial reference coordinate system, I the spacecraft iner-
tia tensor, the disturbance torque ED (gravity-gradient and

aerodynamic torque) and a control torque zc. As shown in

Figure A-1 the spacecraft principal axes (xyz) are related to
an inertial coordinate system (XYZ) by the Euler rotation se-
quence (¥,6,%). The x axis is assumed to be the principal axis
of minimum moment of inertia and the local vertical position of
the spacecraft in orbit 1is defined by the angle n.

In view of Figure A-1 it follows that

w7 1 0 -siné
X
w = wy = 0 cos ¢ cosesing 8 (A-2)
e | 0 -sing¢ cosecosd J | V¥
Since the principal axls ilnertia tensor is given by
I 0 0 7
X
I={0 I 0 (A-3)
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Appendix A

GRAVITY GRADIENT TORQUE

3wf .
I, = -2 [0 A(T~1,)+) B(I-1,)+k €(1,-1,)]

2 < om IR,
A= sin 2[sin? (Y-N)-sin? 6 cos? (Y-7)]
+cos 2sin ¢ sin 2 (W-7)
B = sindPcos § sin 2 {W-1)+cos $sin 2 6 cos? (Y-7)

€ = cos®cos 6 sin 2 (W-7)-sin D sin 2 6 cos? (Y-1n)

AERODYNAMIC TORQUE

I, = ~Tealsin?] (i {0) + ] D+ kEI

Ten = Foun Tep

D =sinPcos (W-1) - cos P sin 9 sin (¥-7)
E =cosPcos (Y=1) « sind sin @ sin (¥-17)

sin ¥ = Vi - cos? @ sin? (W-1)
Y = ANGLE OF ATTACK
Foa = 4 PVo2 Coph, = PEAK DRAG FORCE
Fep = DISPLACEMENT OF CP FROM CG ALONG x AXIS

z 2
2
» X
z “ n
[/ g v

v

X,¥,Z - INERTIAL AXES
X,¥,Z - SPACECRAFT PRINCIPAL
AXES

W,0,0 - EULER ANGLE SEQUENCE

LOCAL
VERTICAL

FIGURE A-t - SPACECRAFT ATTITUDE WITH RESPECT TO INERTIAL REFERENCE;
GRAVITY GRADIENT & AERODYNAMIC TORQUE
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Appendix A

Equation (A-1l) can be written as

-, ‘ - — - - -

Io, ¥ (IZ—Iy)mwa ToxtTax Ty
To + o x Tw = [T o + (I.-T o w | =|T +T +|T (A-4)
- - - y ¥y X Z X Z gy ay cy

L;z“z + (Iy-Ix)mxmy Lng+TaZJ TCZJ

The gravity-gradient and aerodynamic torques expressed in space-
craft principal axis coordinates are stated in Figure A-1.%¥

A general closed form solution of Eq. (A-4) for arbi-
trary initial conditions is presently unknown. In certain
cases however, an analytical solution is possible. One such
case involves the free motion (EC = 0) of a symmetrical space-

craft (IZ = Iy) with the x axis in the orbital plane. The

differential equations for this condition can be obtained from
Eq. (A-4) after substituting Eq. (A-2) and the expressions for
the gravity-gradient and aerodynamic torques given in Figure
(A-1). After some manipulation the result is

it
o

Ix[q; - g—t (% sine>] (A-5)

b . . . . . 2
Ize + [IZW sine + IX(¢ - ¥ sine)]Y cose -Tgm sin26 cos“(¥-n)

+ Tam|siny|sine sin(y-n) (A-6)
and
IZW cos8 - [2IZW sine + Ix(¢ - ¥ sine)]e = —Tgm cos® sin2(¥-n)
- T_pnlsinv|cos(¥-n) (A-T7)

*The aerodynamic torque given in Figure A-1 is based on the
assumption that the center of pressure lles along the x axis and
that the airflow along the spacecraft has.-negligible torque pro-
ducing effect.
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Appendix A
where
siny = Jii— cose sin2(w-n) (A-8)
and
3w§
Tgm = — (IZ - Ix) (A-9)

is the peak gravity-gradient forque and Tam is the peak aero-
dynamlc torque.

It follows from Egqs. (A-5) and (A-6) that the initial
conditions eo = @O = 0 and eo = 0 lead to the result that

=6 =0 for all t >
and Eq. (A-6) is e(t)
(A-7) becomes

0. Consequently a solution for Egs. (A-5)
= 0 and o¢(t) = constant. As a result Eq.

Izw = 'Tgm sin2(y-n) - Tam[cos(w—n)lcos(w—n) (A-10)

Since 6(t) = 0, the spacecraft axis remains in the orbit plane
and its motion is described by Eq. (A-10). In using this result
for the analysis of the quasi-inertial mode the approximation
(2/7n)cos(y-n) is made for the term |cos(y-n)|cos(y-n).* Then
Eq. (A-10) becomes

I¥ = -Ty sin2(y-n) - oTom cos(y-n) (A-11)

where aTgm = 2Tam/n is the equivalent peak aerodynamic torque
expressed as a fraction of the peak gravity-gradient torque
T .

gm

*¥The factor 2/m corrects for the difference in area under
the curves of cos(¥-n) and |cos(¥-n)|cos(¥-n) over any quarter
period.
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Appendix A

When the spacecraft is not symmetrical (IZ 3 Iy), the
free solutlons, 6(t) = 0 and &(t) = ° = constant, cannot occur
unless ¢0 = 0. This is necessary since the component of gravity-
gradient torque Tgx acting on the x axis would no longer be zero,

as was the case in Eq. (A-5). For the existence of a mode where-
in o(t) = o = constant and e(t) = 0, the corresponding angular

velocity w according to Eg. (A-2) must be

— - -~ '

Wy 0
w=fogf= ¥ sine_ (A-12)
w Vv cos o
L 2) L °_

In view of Egs. (A-4), (A-12) and the torque expressions in
Figure (A-1) the equivalent torque to be counteracted, such that
w, = ¢ = 0,% is given by

=
1]

ax = (T = Iugw, = Ty

(Typg/3)5n20 [(¥#/0 ) + 351n°(¥-n)] (A-13)

¥For spacecraft as large as the Orbital Assembly
(IZ = 2.0 x 106, I, = 0.15 x 106 slug/ftz), the maximum angular

rate with minimum impulse RCS control in 1limit cycle operation
is adequately low, but not zero. The maximum rate is given by¥*#¥

. Atmin
o = T dt | /21
m c X
0

For the Apollo CSM, ITCdt 2% 10 ft.lb.sec., so that ém n 0.002

deg/sec, which 1is well below the range of ¥ and w to be en-
countered here. ©

¥#¥See V. E. Haloulakos, "Thrust and Impulse Requirements for
Jet Attitude Control Systems", Journal of Spacecraft, Vol. 1,
January, 1964, pp. 84-90.
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where
_ 2
emx = (305/2) (I, - I)) (A-14)

is the peak gravity-gradient torque about the x axis. The
differential equation for ¥ follows from

Tywy = Iyv sine, = T + Ty (A-15)
and |
Izwz = Izw cose = ng + TaZ (A-16)
which yield
Q = o cose + w_ sine
z 0 v 0
T A T az Ta
= (TE_)COS®0 + Tgx sine +|y—|cose + T—X sine ~ (A-17)
z y z y

Substitution from Figure (A-1) for the torque expressions yields

. T T
Yy = - —%EE cos2¢ + —%EX sin2¢ sin 2(vy-n)
[o] [o]
z y
cos2q>o sin2¢o
- T + cos(y~n)jcos(y-n) (A-18)
am IZ Iy

where Tam is the peak aerodynamic torque and

- 2
Tgmz = (3w /2) (Iy - 1) (A-19)
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and
T = (3w5/2) (I, - I.)
gmy ) Z X

(A-20)

are the peak gravity-gradient torques on the z and y axes respec-
tively. This result can be reduced to a form similar to Eq.

(A-11) with the approximation (2/rm)cos(¥-n) for the term
|cos(¥-n)|cos(¥=-n).*¥ This yields

Yy = - B! sin 2(¥-n) - a'B' cos(¥-n)
where

B'

(3w§/2)ké (1 + a)

and

a(l + A)/(1 + &)

QR
]

The constants B' and o' are related to @o and the moments
inertia as follows

A= (p - l)sin2<1>o
A= k&z sin2<1>0
u = k&/ké
k& = (I, - IX)/Iy
k) = (Iy - I/I,

%#See footnote on page 4, Appendix A.

(A-21)

(A-22)

(A-23)

of

(A-21)

(A-25)

(A-26)

(A-27)

(A-28)
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and finally

k§z = (I, -'Iy)/Iy (A-29)

For IZ = Iy it follows that ké = k&, g =1, A =0, k&z = 0 and

= 1 = ' = = 3 is—
A 0 so that « a and B Tgmz/Iz Tgm/Iz which 1s consi
tent with Egq. (A-11).

When the spacecraft asymmetry is not large the para-
meters B' and o' wlll not differ greatly from the symmetrical
case (IZ = Iy). An indication of the variation in the para-

meters B' and o' due to spacecraft asymmetry 1s shown in Table
A-1 where the parameters for two asymmetrical configurations,

I_>I > I and I_ > I_ > I_, are compared with those for two
Z y X z y X

symmetrical configurations, IZ

Iy >> Ix and Iz = Iy > Ix re-
spectively. In each case @o = 45° is assumed. The results indi-

cate that the effect of slight spacecraft asymmetry is to decrease

o' somewhat whereas B' remains virtually unchanged.

TABLE A-| - EFFECT OF SPACECRAFT ASYMMETRY
ON_PARAMETERS B' AND a'

w (8)

PAnAgzt:us' =1, ' 11> 1, - l; 121,01,
. 2.06 xio* 2.06 x10¢ | 2.06xl0® 2.06x108
C 2.06 x10% | 1.96 x10% { 2.08xi0% | I1.56xI0¢
i 0.135x10% ‘[ 0.135x10¢ | o.5exi0® | 0.56x10®

k) 0.935 o082 | o.7s7 0.961

k! 0.935 0.886 0.757 0.485

ki 0 0.051 0 0.32

“ 1.0 1.110 1.0 1.98

a o 0.055 0 0.49

A 0 0.0275 0 0.18

dle 1.0 0.97% 1.0 0.78
/s, 0.935 . 0.934 0.787 0.723

*UNITS: SLa - FT?
A .'l. - 3 uglz
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APPENDIX B

Reduction of Elliptic Integral to Normal Form

The normal form for the elliptic integral of the first

kind is

8
F(kesB) = f do .
o A - ki s1n®g

(B-1)

An equilvalent expression for the integral with the radical in

polynomial form can be obtained by defining

z = sing
where
d = cosog do = V1 - 2 dg

Z

Substitution into Eq. (B-1) yields

Z
1 d
F(k,,8) = §— :
e Jo /R(z)

where

2

R(z) = (1 - 2°) (1/kZ - 2°)

sin 8.

and z

(z + l/ke)(z + 1)(z - 1)(z - 1/ke)

(B-2)

(B-3)

(B-4)

(B-5)
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The integral

8
G(8) = jr dy — (B-6)
0 /1 - k4 (siny + a/2)?

a

is also an elliptic integral of the first kind although not in
normal form unless a = 0. An equivalent expression with the
radical in polynomial form follows after defining

y = siny (B-7)

where

dy = cosy dy = V1 - y2 dy (B-8)

Substitution into Eq. (B-6) yields

Y1
1 d
G(y) = G(y,) = —-f —=r (B-9)
1 Ky 0 VP(y)
where
B(y) = (1 - y)[1/kS - (v + a/2)°]
1 + ka a/2 1 -k o/2
= y + K (y+1)(y_l) y -( ka )
a a
= (y - a))y - a))(y - a3)(y - a)) (B-10)

The problem here is that the roots of P(y) do not form a symmet-
rical pattern about the origin, since a| + - ay.
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The elliptic integral in terms of P(y) can be reduced
to the normal form in terms of R(z) by using the bilinear trans-
formation. v

z=piLtA | (B-11)

In terms of y the transformation 1s

y = A%:—gi . (B-12)
where.
1 (B - A)

dy =

dz (B-13)
D (1 - z/p)°

The objective here is to transform the roots of P(y) in order to
obtain a symmetrical destribution about the origin as in Eq.
(B-5) for R(z). Substitution of Eq. (B-11) into Eq. (B-10)
yields

P(y) = q2(z—zl)(z-z2)(z—z3)(z—zu) = q2 R(z) (B-14)
where

ay A
zy =D 2, ¥ B) (B-15)

a, + A
22 =D ;2-_‘|'_B =D ‘g—:—}-) (B—l6)

2
_ jag + A A+ 1

Z3 =D as + B D B + 1 (B-17)

EN + A
Zu = D m] (B—l8)
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and
5 (al + B)(a2 + B)(a3 + B)(au + B)

(z - D)

(8 - 1)(B + 1)(a, + B)(a, + B)
D (1 - z/D)

where a2 = - 1= -2

3°

In order to obtain the normal form indicated in Eq.

(B-5) it 1is necessary that Z, = - 1, z3 = + 1 and

zq = - l/ke = - Zy. The flrst two conditions are satisfied by
B =D and AD = 1.

The third condition requires that
(B-20)

or

(a) + au)Dg +2(1 + a;a,)D + (a; + a)) = 0 (B-21)

Solution for D yilelds

-2(1 +#aual) + /(au—l)(l—al)(au+1)(1+a )

1

An alternate form for this result is obtalned by defining

n' = /(1% a;)(a, + 17 (B-23)
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and
" ' :
n = /1 -a;)(a, - 1) (B-24)
so that
n"2 + n'2 + 2n"nt n" + n| 1
b= > 7 — = = 5 (B-25)
n"" - n!' n" - n' n

Thus, the transformation in Eq. (B-11l) can be written as

= { + n (B-26)

Z=Dj+DA=g\L+1
y +D

Substitution of the results in Egs. (B-13), (B-14),
(B-19) and (B-26) into Eq. (B-9) leads to the following relation-
ship for the elliptic integral analogous to the form in Eq. (B-4)

Y1 21
k k m |k
a 0 /Riyi a e 0 YR(z)
where
yl +n
Zl = T—:-Ty—; B (B—28)
and

/T8 - 1)(B ¥ 1)(a, * B)(a, * B)
m = D(B - Ak,

/?I—ng)(1+na1)(l+nau)‘=N/(l+nal)(l+na477
(l—nz)ke (1-n2)k§

(B-29)

since D = 1/n = B and A = 1/D = n.
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In view of Egs. (B-20) and (B-25) it follows that

1+ nah 1 + na;
Ke = 5, Fn -~ & ¥n (B-30)
so that
- (a, + n)(a, + n)
m =\/ 1 “2 (B-31)
(1 - n%)

An alternate form for ke and m can be obtained by defining

m' /(1 - ai)(au + 1) (B-32)

m"

/=(1 + al)(au - 1) (B-33)

Substitution for n from Egs. (23), (24) and (25) and further
manipulation yields

k, = =T (B-34)
m' + m" »
and
1] 1"
m= 2t m ; m (B-35)

In summary, the elliptic integral in Eq. (B-6) can be
written in normal form (with arbitrary limits) as

s

1 By
jr dy I j’ do
=1 k_m )
60 /& - ki(sinw + a/2)2 a BO /ﬁ - kg sin2c

1

k m
a

[F(k,,8;) - F(kg,8q)] (B-36)
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with the variables ¢ and ¢ related by Eqs. (B-2, (B-7) and
(B-26) so that#*

siny + n

1 + n siny (B-37)

sino =

The parameters m, ke and n can be expressed in terms
of ka and o after substituting aq and ay from Eq. (B-10) into

Egs. (B-23), (B-24), (B-32) and (B-33). The resulting expres-
sions

nt = A - (1 - a/2)2kz%ca (B-38)

amo= A - (14 a/2)2k2%{a (B-39)

m = A1+ k)? - (x, w22k, (B-40)
and

m" = /(1 - ka)2 - (ka “/2)2%% (B-41)

can then be used to evaluate m, ke and n given by #

me 2 W (B~42)
m' - m"
Ke = mrsm" (B-43)
and
n" - n'
=TT (B-HH)

¥The form of these results 1s 1dentical to that glven by
J. Houel, Recull de Formules et de Tables Numeriques, Gauthler-
Villars, Paris, 1901, pp. 53, 5A4.
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